研究成果
代表性论文:
[1] High-valent iron-oxo complexes as dominant species to eliminate pharmaceuticals and chloride-containing intermediates by the activation of peroxymonosulfate under visible irradiation. Catalysis Letters, 2020, 150(5), 1355-1367.(影响因子:2.372)
[2] Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Applied Catalysis B-Environmental, 2019, 258. (影响因子:14.229)
[3] Colored TiO2 composites embedded on fabrics as photocatalysts: Decontamination of formaldehyde and deactivation of bacteria in water and air. Chemical Engineering Journal, 2019, 375.(影响因子:8.355)
[4] The development of new pigments: Colorful g-C3N4-based catalysts for nicotine removal. Applied Catalysis B-Environmental, 2019, 254, 500-509. (影响因子:14.229)
[5] Interpenetrating-Syncretic Micro-Nano Hierarchy Fibers for Effective Fine Particle Capture. Advanced Engineering Materials, 2019, 21.(影响因子:2.906)
[6] Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants. Applied Catalysis B-Environmental, 2019, 96-106.(影响因子:14.229)
[7] Robust three-dimensional g-C3N4@cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics. Chemical Engineering Journal, 2019, 119-129.(影响因子:8.355)
[8] Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate. Chemical Engineering Journal, 2019 357, 198-208.(影响因子:8.355)
[9] Structure-property evolution of poly(ethylene terephthalate) fibers in industrialized process under complex coupling of stress and temperature field. Macromolecules, 2019, 52 (2), 565-574.(影响因子:5.997)
[10] Graphitic carbon nitride embedded in hot-melt adhesive polyester and hydrophilic cellulose blend fibers for the efficient elimination of antibiotics under solar irradiation. Applied Surface Science, 2018, 453, 110-119.(影响因子:5.155)
[11] Oxidative removal of sulfa antibiotics by introduction of activated carbon fiber to enhance the catalytic activity of iron phthalocyanine. Microporous and Mesoporous Materials, 2018, 261, 98-104.(影响因子:4.182)
[12] Catalytic degradation of sulfaquinoxalinum by polyester/poly-4-vinylpyridine nanofibers-supported iron phthalocyanine. Environmental Science and Pollution Research, 2018, 25, 5902-5910.(影响因子:2.914)
[13] Effective elimination of antibiotics over hot-melt adhesive sheath-core polyester fiber supported graphitic carbon nitride under solar irradiation. Chemical Engineering Journal, 2018, 335, 82-93.(影响因子:8.355)
[14] Bioinspired catalytic generation of high-valent cobalt-oxo species by the axially coordinated CoPc on pyridine-functionalized MWCNTs for the elimination of organic contaminants. Applied Surface Science, 2018, 434, 1112-1121.(影响因子:5.155)
[15] Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate. Chemical Engineering Journal, 2017, 330, 625-634.(影响因子:8.355)
[16] Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine. Applied Catalysis B-Environmental, 2017, 218, 230-239.(影响因子:14.229)
[17] Visible-light-assisted generation of high-valent iron-oxo species anchored axially on g-C3N4 for efficient degradation of organic pollutants. Chemical Engineering Journal, 2017, 328, 853-861.(影响因子:8.355)
[18] Identification of O-bridge iron perfluorophthalocyanine dimer and generation of high-valent diiron-oxo species for the oxidation of organic pollutants. Chemical Engineering Journal, 2017, 328, 915-926.(影响因子:8.355)
[19] Waste-to-energy conversion on graphitic carbon nitride: Utilizing the transformation of macrolide antibiotics to enhance photoinduced hydrogen production. ACS Sustainable Chemistry & Engineering, 2017, 5, 9667-9672.(影响因子:6.970)
[20] Free channel formation around graphitic carbon nitride embedded in porous polyethylene terephthalate nanofibers with excellent reusability for eliminating antibiotics under solar irradiation. Industrial & Engineering Chemistry Research. 2017, 56, 11151-11160.(影响因子:3.375)
[21] Pyridyl-containing polymer blends stabilized iron phthalocyanine to degrade sulfonamides by enzyme-like process. Chemical Engineering Journal, 2017, 321, 58-66. (影响因子:8.355)
[22] A novel method for ultra-deep desulfurization of liquid fuels at room temperature. Chemical Engineering Journal, 2017, 317, 1092-1098.(影响因子:8.355)
[23] Hydroxyl radical-dominated catalytic oxidation in neutral condition by axially coordinated iron phthalocyanine on mercapto-functionalized carbon nanotubes. Industrial & Engineering Chemistry Research, 2017, 56, 2899-2907.(影响因子:3.375)
[24] A bio-inspired strategy to enhance the photocatalytic performance of g-C3N4 under solar irradiation by axial coordination with hemin. Applied Catalysis B-Environmental, 2017, 201, 518-526.(影响因子:14.229)
[25] Drastic rate acceleration driven by synergistic effects: Key role of persistent free radicals coupled with ascorbic acid in decomposition of organic contaminants by ferric citrate. Chemical Engineering Journal, 2016, 304, 440-447.(影响因子:8.355)
[26] Insights into the generation of high-valent copper-oxo species in ligand-modulated catalytic system for oxidizing organic pollutants. Chemical Engineering Journal, 2016, 304, 1000-1008.(影响因子:8.355)
[27] Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants. Journal of Hazardous Materials, 2016, 317, 17-26.(影响因子:7.650)
[28] Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation. ACS Applied Materials & Interfaces, 2016, 8, 25962-25970.(影响因子:8.456)
[29] Key role of activated carbon fibers in enhanced decomposition of pollutants using heterogeneous cobalt/peroxymonosulfate system. Journal of Chemical Technology and Biotechnology, 2016, 91, 1257-1265.(影响因子:2.659)
[30] Electrocatalytic degradation of organic contaminants using carbon fiber coupled with cobalt phthalocyanine electrode. Journal of Applied Electrochemistry, 2016, 46, 583-592. (影响因子:2.366)
[31] Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway. Water Research, 2016, 93, 296-305.(影响因子:7.913)
[32] Electronic properties of carbon nanotubes linked covalently with iron phthalocyanine to determine the formation of high-valent iron intermediates or hydroxyl radicals. Carbon, 2016, 100, 408-416.(影响因子:7.466)
[33] Enhanced generation of reactive oxygen species for efficient pollutant elimination catalyzed by hemin based on persistent free radicals. Applied Catalysis B-Environmental, 2016, 183, 291-297.(影响因子:14.229)
[34] Mesoporous carbon-supported cobalt catalyst for selective oxidation of toluene and degradation of water contaminants. Particuology, 2016, 24, 216-222.(影响因子:2.616)
[35] The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation. Journal of Hazardous Materials, 2016, 301, 214-221.(影响因子:7.650)
[36] Efficient oxidative removal of organic pollutants by ordered mesoporous carbon-supported cobalt phthalocyanine. Journal of Nanomaterials, 2016, 6953587.(影响因子:2.233)
[37] Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(III)/Fe(II) cycle with L-cysteine. RSC Advances, 2016, 6, 47661-47668.(影响因子:3.049)
[38] Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Applied Catalysis B-Environmental, 2016, 180, 20-28.(影响因子:14.229)
[39] Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: Implications for the removal of organic pollutants. Chemical Engineering Journal, 2015, 281, 953-960.(影响因子:8.355)
[40] Enhanced catalytic decoloration of Rhodamine B based on 4-aminopyridine iron coupled with cellulose fibers. Journal of Chemical Technology and Biotechnology, 2015, 90, 1144-1151.(影响因子:2.659)
[41] An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal. Chemical Engineering Journal, 2015, 267, 102-110.(影响因子:8.355)
[42] Formation of high-valent cobalt-oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants. Applied Catalysis B-Environmental, 2015, 163, 105-112.(影响因子:14.229)
[43] Visible-light responsive electrospun nanofibers based on polyacrylonitrile-dispersed graphitic carbon nitride. RSC Advances, 2015, 5, 86505-86512.(影响因子:3.049)
[44] Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes. RSC Advances, 2015, 5, 9374-9380.(影响因子:3.049)
[45] Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chemical Engineering Journal, 2014, 251, 348-354.(影响因子:8.355)
[46] Photocatalytic activity of phthalocyanine-sensitized TiO2-SiO2 microparticles irradiated by visible light. Materials Science in Semiconductor Processing, 2014, 25, 148-152.(影响因子:2.722)
[47] Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst. Applied Catalysis B-Environmental, 2014, 154, 36-43.(影响因子:14.229)
[48] Enhanced removal of acid red 1 with large amounts of dyeing auxiliaries: the pivotal role of cellulose support. Cellulose, 2014, 21, 2073-2087.(影响因子:3.917)
[49] Anchored iron ligands as an efficient Fenton-like catalyst for removal of dye pollutants at neutral pH. Industrial & Engineering Chemistry Research, 2014, 53, 8376-8384.(影响因子:3.375)
[50] Ordered-mesoporous-carbon-bonded cobalt phthalocyanine: A bioinspired catalytic system for controllable hydrogen peroxide activation. ACS Applied Materials & Interfaces, 2014, 6, 5869-5876.(影响因子:8.456)
[51] Role of cellulose fibers in enhancing photosensitized oxidation of basic green 1 with massive dyeing auxiliaries. Applied Catalysis B-Environmental, 2014, 147, 805-812.(影响因子:14.229)
[52] Oxidative desulfurization of dibenzothiophene with molecular oxygen catalyzed by carbon fiber-supported iron phthalocyanine. Reaction Kinetics Mechanisms and Catalysis, 2014, 111, 535-547.(影响因子:1.428)
[53] Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst. Chemical Engineering Journal, 2014, 240, 413-419.(影响因子:8.355)
[54] Rapid removal of dyes under visible irradiation over activated carbon fibers supported Fe(III)-citrate at neutral pH. Separation and Purification Technology, 2014, 122, 449-455.(影响因子:5.107)
[55] Enhanced decomposition of dyes by hemin-ACF with significant improvement in pH tolerance and stability. Journal of Hazardous Materials, 2014, 264, 323-331.(影响因子:7.650)
[56] Activation of hydrogen peroxide by activated carbon fibers coupled with Fe(III)-citrate for degradation of dyes at neutral pH. Acta Chimica Sinica, 2013, 71, 1633-1638.(影响因子:2.463)
[57] Photocatalytic degradation of dyes using dioxygen activated by supported metallophthalocyanine under visible light irradiation. Current Applied Physics, 2013, 13, 1738-1742.(影响因子:2.010)
[58] Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chemical Engineering Science. 2013, 101, 424-431.(影响因子:3.372)
[59] Synthesis and photoactivity of pH-responsive amphiphilic block polymer photosensitizer bonded zinc phthalocyanine. Science China-Chemistry, 2012, 55, 1108-1114.(影响因子:6.085)
[60] The coupling of metallophthalocyanine with carbon nanotubes to produce a nanomaterial-based catalyst for reaction-controlled interfacial catalysis. Carbon, 2011, 49, 1699-1709.(影响因子:7.466)
[61] Thermosensitive copolymer with cobalt phthalocyanine and catalytic behavior based on adjustable LCST. Reactive & Functional Polymers, 2010, 70, 135-141.(影响因子:3.074)
[62] The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon, 2009, 47, 3337-3345.(影响因子:7.466)
[63] Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Applied Catalysis B-Environmental, 2009, 87, 146-151.(影响因子:14.229)
[64] Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine. Journal of Molecular Catalysis A-Chemical, 2009, 298, 17-22.(影响因子:5.008)
[65] Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine. Environmental Science & Technology, 2007, 41, 6240-6245.(影响因子:7.149)
授权专利:
[1] 一种高活性催化碳纤维材料及制备方法 发明专利 ZL201510002910.8
[2] 具有高催化活性的仿生催化碳纤维材料及制备方法 发明专ZL201510002769.1
[3] 一种聚丙烯腈基仿生催化纤维及制备方法 发明专利 ZL201510002853.3
[4] 一种纤维素基仿生催化纤维及制备方法 发明专利 ZL201510002840.6
[5] 一种催化碳纤维及制备方法 发明专利 ZL201310689382.9
[6] 基于金属酞菁的抗菌止痒催化纤维及其制备方法 发明专利ZL201510368811.1
[7] 具有催化活性的介孔碳负载金属酞菁及制备方法 发明专利 ZL201310686969.4
[8] 一种测定聚酰胺分子量及其分子量分布的方法 发明专利ZL201510354919.5
[9] 一种测定聚酯分子量及其分子量分布的方法 发明专利 ZL201510354996.0
[10] 一种空气中挥发性有机污染物的净化方法 发明专利 ZL201510170838.X
[11] 具有催化功能的碳纤维材料及其制备方法 发明专利 ZL201510001125.0
[12] 一种仿生催化去除甲醛的空气净化器 发明专利 ZL201510001136.9
[13] 一种吸附-过滤双功能电催化去除甲醛的空气净化器 发明专利ZL201510002828.5
[14] 一种聚酰亚胺纤维及其制备方法 发明专利 ZL201110256670.6
[15] —种光催化剂及其制各方法和应用 发明专利 ZL201610699773.2
[16] 一种多孔光催化纤维及其制备方法 发明专利 ZL201710546583.1
[17] 一种复合光催化纤维及其制各方法 发明专利 ZL201610696643.3
[18] 一种光催化纤维及其制备方法 发明专利 ZL201610693428.8
[19] 一种复合光催化剂及其制备方法和应用 发明专利 ZL201610701918.8
获奖情况:
[1] 吕汪洋. 博士论文《催化功能纤维降解染料等有机污染的研究》获全国优秀博士学位论文提名奖,2012.
[2] 陈文兴, 吕汪洋, 姚玉元, 王晟, 王騊, 李楠. 环境催化纤维的设计制备及降解有机污染物的研究, 浙江省人民政府, 浙江省科学技术奖, 一等奖, 2011.
[3] 陈文兴, 吕汪洋, 姚玉元, 王晟, 胡智文, 王騊, 李楠. 催化功能性纤维及其应用基础研究, 中国纺织工业协会, 中国纺织工业协会科学技术奖, 一等奖, 2011.
[4] 陈文兴, 吕汪洋, 姚玉元, 徐敏虹. 基于纤维键合酞菁催化剂的"相转移原位催化氧化技术"及其高效降解染料的研究. 浙江省自然科学学术奖, 一等奖, 2010.
科研项目:
[1] 国家自然科学基金项目:可见光响应催化纤维选择性消除染料等有机污染物
[2] 国家重点研发计划课题:低温仿生催化体系的构建及其在棉型针织物前处理中的应用研究
[3] 国家自然科学基金重点项目:环境催化纤维多场驱动下消除有机污染物的研究
[4] 国家重点研发计划课题:高性能聚酯与聚酰胺66工业丝高效低碳制备基础研究
[5] 国家重点基础研究发展计划(973计划)项目:面向地方特色产业的新材料功能化设计及性能调控
[6] 中国纺织工业联合会应用基础研究项目:环境催化纤维降解染料的基础研究
[7] 浙江省自然科学基金项目:新型催化功能纤维的构筑及选择性消除持久性有机污染物
[8] 浙江省自然科学基金项目:活性碳与金属酞菁协同催化降解典型持久性有机污染物的研究
[9] 浙江省科技厅一般项目:纤维材料仿生催化反应器消除难降解有机微污染物的技术研发与应用
[10] 浙江省科技厅一般项目:纤维接枝包络维生素E的研究
[11] 浙江省科技厅一般项目:新型聚酰亚胺的制备及其可纺性研究
[12] 企业委托项目:非金属材料一致性鉴定分析技术研究