研究成果

我的研究成果

一、获奖

          1.浙江省科学技术奖二等奖,机电动力系统的对称性与积分方法研究,2010年,第一名;

         2.教育部自然科学奖二等奖,有限和无限自由度系统的对称性和守恒量, 2010年,第二名;

    3.上海市科技进步二等奖,力学系统的对称性和守恒量,2005年,第二名;

          4 河南省科技进步奖三等奖,机电耦合动力系统的对称性、稳定性及其应用。2008年,第二名;

    5. 河南省教学成果一等奖,旋转二次曲面成像在物理教学中的应用研究,2005年,第一名,

二、科研项目    

1.国家自然科学基金项目(11272287),分数阶约束力学系统的基本框架和对称性理论研究(2013.1-2016.12),资助86万元,项目主持人;

2.国家自然科学基金项目(11072218),离散约束力学系统的对称性和守恒量研究(2011.1-2013.12),资助39万元,项目主持人;

3.国家自然科学基金项目(10672143),离散机电动系统的对称性和保结构算法(2007.01~2009.12),资助34万,项目主持人

4.河南省自然科学基金项目(0511022200),机电动力系统的对称性和数值计算方法(2005.1-2007.12),项目主持人

5.河南省自然科学基金项目(0311011400),机电动力系统的现代数学方法(2003.1-2005.12),项目主持人

6.河南省自然科学基金项目(984053100),相对论Birkhoff系统动力学研究(1998.1-2001.12), 项目主持人

7.  浙江省自然科学基金项目(Y6100337),第二类Mei对称性下动力学系统共形不变性与守恒量的研究(20111.1-2012.12),资助10万元,第2

8.河南省自然科学基金项目(0211011800),约束力学系统的精确不变量和绝热不变量(2002.1-2003.12),排名2

9 河南省自然科学基金项目(072300440220),机电耦合动力系统的对称性、稳定性及其应用(2007.1-2008.12, 排名2

10.河南省自然科学基金项目(998040080),Birkhoff系统的全局分析分岔与混沌(1999.1-2000.6),排名3

      11.河南省自然科学基金项目,约束力学系统的对称性和全局分析,排名2

12.中国科学院科学与工程计算国家重点实验室资助项目,机电系统的辛算法和对称性分析(2005.1-2005.12),项目主持人

13.中国科学院科学与工程计算国家重点实验室资助项目,机电系统的对称性和保结构算法(2006.1-2006.12),项目主持人

14.中国科学院科学与工程计算国家重点实验室资助项目,离散机电动力系统的非Noether对称性和守恒量(2007.1-2007.12),项目主持人。

三、发表主要论文

 

1.Fu Jing-LiXie Feng-Ping and Guo Yong-Xin, Algebraic Structure and Poisson’s Integral Theory of f (R) CosmologyInternational Journal of Theoretical Physics201250(1):1968-1981

2.  Fu Jing-Li, Zhao Wei-Jia and Chen Ben-Yong, Energy–work connection integration schemes for mechanico-electrical systemsin, Nonlinear Dynamics: 2012,70,(1): 755-765

3. Zhou Sha, Fu Hao& Fu Jing-Li, Symmetry theories of Hamiltonian systems with

fractional derivatives, ScienceChina: Physics, Mechanics & Astronomy, 2011, 54 ,(10): 1847- 1853

4.  Fu Jing-Li, Chen Ben-Yong, Fu Hao, Zhao Gang-Ling, Liu RongWan, and Zhu. Zhi-Yan1, Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems, ScienceChina: Physics, Mechanics & Astronomy, 2011,54 (2): 288–295

5. Fang-Yu Hong, Yang Xiang, Jing-Li Fu and Zhi-Yan Zhu, All-electrical control of the Photon-Charge-Qubit interfaces for quantum networks, Journal of the Physical Society of Japan, 2012,81:104001-4

6.  Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 (9): 1699–17063

7. Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698

8. Fu Jing-LiChen Li-Qun and Chen Ben-Yong, Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices, Science China, Physics. Mechanics & Astronomy, 2010, 53(3): 545-554

9傅景礼,陈立群,陈本永,非规范格子离散机电耦合动力系统的Noether理论,中国科学G辑,2010402):133-145

10.  傅景礼,陈立群,陈本永,非规范格子离散非保守系统的Noether理论,中国科学G辑,2009399):1320-13293.

11.  Fu Jing-Li, Fu Hao and Liu Rong-Wan, Hojman conserved quantities of discrete mechanico- electrical systems constructed by continuous symmetries, Physics Letters A, 2010, 374:1812-1818

12.  Fu Jing-Li ,Fu Hao , Su Ning-Fen  and Bai Guo-Liang, Damped Properties and Noether Symmetries of Damped Free Vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15(1): 50-53

13.  Zhao Li, Fu Jing-Li and Chen Ben-Yong, Lie symmetries and conserved quantities for atwo-dimentional nonlinear diffusion equation of concentration, Chinese Physics B, 2010,  19(1):010301-010301-5

14. Fu Jing-Li,Chen Ben-Yong and Chen Li-Qun, Noether symmetries of discrete nonholono-mic dynamical systems, Physics Letters A, 2009.373409-412

15. Fu Jing-Li and Chen Ben-Yong, Hojman conserved quantities and Lie symmetries of non-conservative systems, Modern Physics Letters B,2009,23(10):1315-1322

16.  Fu Jing-Li,Nie Ning-Ming,Huang Jian-Fei,Jimé nez Salvador,Tang Yi-Fa,Vá zquez Luis and Zhao Wei-Jia, Noether conserved quantities and Lie point symmetries of difference Lagrange--Maxwell equations and lattices, Chinese Physics B, 2009 18(7):2634-2641

17.  Li Ziyan and Fu Jingli(通讯作者), Euler–Lagrange equation from nonlocal-in-time kinetic energyof nonconservative system Physics Letters A, 2009,374:106-109

18.  Fu Jing-Li, Salnalor Jiménez and Tang Yi-Fa and Luis Vázquez, Construction of exact invariants of time-dependent linear nonholonomic dynamical systems, Physics Letters A, 2008,372: 1555-1561

19.  Wang Xian-Jun and Fu Jing-Li(通讯作者), Energy-work connection integration scheme for nonholonomic Hamiltonian systems, Communication in Theoretical Physics, 2008,50(5): 1041-1046

20.  Fu Jing-Li, Chen Ben-Yong and Xie Feng-Ping, Noether symmetries of discrete mechanico-electrical systems, Chinese Physics B, 2008,17(12): 4354-4360

21.  Fu Jing-Li, Xu Shu-Shan and Weng Yu-Quan, A field method for integrating the equations of motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2008, 17(6):1939-1945

22.  Fu Jing-Li, Zhao Wei-Jia and Weng Yu-Quan, Structure properties and Noether symmetries for super-long elastic slender rod, Chinese Physics B, 2008,17(7):2361-2365

23.  Fu Jing-Li, Dai Gui-Dong, Salvador Jimsenez and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics, 2007,16: 570-577

24.  Zhao Wei-Jia, Weng Yu-Quan and Fu Jing-Li(通讯作者)Lie symmetries and the conserved quantities for super-long elastic slender rod, Chinese Physics Letters, 2007,24 (10): 2773-2776

25. Fu Jing-Li, Chen Li-Qun, Chen Xiang-Wei, Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems Chinese Physics, 2006, 15(1): 8-12

26. Fu Jing-Li, Chen Li-Qun, Salnalor Jiménez and Tang Yi-Fa, Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems, Physics Letters A 2006, 358(1) : 5-10

27. Liu Cui-Mei, Wu Run-Heng and Fu Jing-Li(通讯作者), Lie symmetries algebra of one-dimensional  nonconservative dynamical systems, Chinese Physics, 2007,16(9):2665-2670

28. Zheng Shi-Wang, Tang Yi-Fa and Fu Jing-Li(通讯作者), Non-Noether symmetries and Lutzky conserved quantities for nonholonimic neoconservative dynamical systems, Chinese Physics,2006, 15(2),243-248

29. Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, Algebraic structure and Poisson’s theory of mechanico-electrical systems, Chinese Physics, 2006, 15(8),1653-1661

30Fu Jing-Li, Chen Li-Qun and Bai Jing-Hua, Localized Lie symmetries and conserved quantities for the finite-degree-of-freedom systems, Chinese Physics, 2005, 14, 6-11        

31. Fu Jing-Li, Li-Qun Chen, Non-Noether symmetries and conserved quantities  ofnonconser-vative dynamical shstems, Physics Letter A, 2003, 317 (3-4), 255-259

32. Fu Jing-Li, Li-Qun Chen, Form invariance, Noether symmetry and Lie symmetry of

Hamilton systems, Mechanics Research Communication 2004 31(1) 9-19  

33. Fu Jing-Li, Li-Qun Chen, Perturbation of Symmetries of Rotational Relativistic Birkhoffian Systems and Its Inverse Problems, Physics Letters A 2004324 2/395-103

34. Fu Jing-LiChen Li-QunOn Noether symmetries and form invariance of mechanico-electrical systems Physics Letters A 2004331,138-152      

35. Fu Jing-Li, Li-Qun Chen. Lie symmetries and non-Noether symmetries of Hamilton canonical systems, Chin. Phys.2004,13,1611-1614

36Fu Jing-Li, Li-Qun Chen. Non Noether symmetries and conserved quantities of Lagrange mechanico-electrical systems, Chin. Phys. 2004, 13, 1784-1789 

37. Fu Jing-Li, Chen Li-Qun, Luo-Yi, Luo Shao-Kai, Stabikity of the equilibrium manifold

of the relativistic Birkhoffian systems, Chinese Physics, 2003,12 (4)351-356

38. Fu Jing-Li, Chen Li-Qun, Bai Jing-Hua, Yang Xiao-Dong, Lie symmetries and conserved quantities of the controllable non-holonomic systems Chinese physics, 2003,12 (7), 695-699

39Fu Jing-Li, Li-Qun ChenVelocity-dependent symmetries and conserved quantities of

nonholonomic dynamical systems, Chinese Physics 2004, 13 (3)  287-291

40. Jing-Li Fu, Li-Qun ChenFeng-Ping Xie, Form invariance, Noether symmetries and Lie symmetries of nonconservative dynamical systems, Journal of Shanghai university, 2004,6(3),252-257(EI04488688944)

41. Fu Jing-Li, Li-Qun Chen and Xiang-Wei Chen, Momentum-dependent symmetries and non-Noether conserved quantities for nonconservative Hamilton systems, Multidiscipline Modeling in Mat and Str, 2006,2(2),213-220

42. Ke Xian-Xin, Gong Zhen-Bang and Fu Jing-Li, Lie symmetries and conserved quantities of a biped robot, Acta Mechanica Sinica Solida, 2004,17(2),183-188

43. Fu Jing-Li, Dai Gui-Dong, Salvaolor Jimenes and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange--Maxwell mechanico-electrical systems, Chinese Physics,200716(3),570-577

44. Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, A series of non-Noether conservative quantities and Mei symmetries of nonconservative systemsChinese Physics,200716(3):599-604

45. Zheng Shi-Wang Fu Jing-Li(通讯作者) Shi Shen-Yang, Chen Li-Qun  Chen Xiang-Wei Generalized geometry theory on constrained rotating relativistic Birkhoffian systemsJournal of Shanghai University, 2007,11(2): 115-120

46. Jing-Li Fu, Hao Fu, Ning-Fen Su, and Guo-Liang Bai. Damped properties and Noether symmetries of damped free vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15, (1):. 50-53

47. Jing-Li Fu, Hao Fu, Rong-Wan Liu, Hojman conserved quantities of discrete mechanico– electrical systems constructed by continuous symmetries. Physics Letters A 2010, 374 (2010) 1812–1818SCI 583SS

48.  Zhao Li, Fu Jing-Li, and Chen Ben-Yong, Lie symmetries and conserved quantities for a

two-dimentional nonlinear diffusion equation of concentration, Chin. Phys. B 2010 , 19 (1) : 010301- 010301-5

49.  He Yu-Fang, Fu Jing-Li and Li Xiao-Wei. The symmetries of wave equations on new lattices, Chin. Phys. B 2010 , 19 (6):080301-6  EI: 20102513017629

50Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1699–1706

51.  Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698

52.  Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and conserved quantities of Appell

systems under second-class Mei symmetry, Chin. Phys. B, 2010,19(9): 090304-090304-6

53. Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and Hojman conserved quantities

for holonomic systems with quasi-coordinates, Chin. Phys. B, 2010,19(9): 090303-090303-6

54.  zhou Sha,Fu Jing-Li and Liu Yong-Song, Lagrange equations of nonholonomic systems with feactional derivatives, Chin. Phys. B, 2010.19(12):120301-5

55.  He Yu-Fang, Liu Yong-Song and Fu Jing-Li, Reductions and conserved quantities for discrete compound KdV-Burgers equations, Chin. Phys. B, 2011.20(1):010202-7

56Shi Shen-Yang and Fu Jing-Li, Lie symmetry and Mei conservation law of continuum system, Chin. Phys. B, 2011.20(1):021101-5

57.  Luo Yi-Ping and Fu Jing-Li, Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry, Chin. Phys. B, 2011.20(1):021102-5

58.  Li C.R., Lu N.P, Xua Q., Mei J, Dong W J, Fu J.L., Cao Z.X., Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution, Journal of Crystal Growth, 2011, 319: 88–95

59. Zhao Li, Fu Jing-Li and Chen Ben-Yong, A new type of conserved quantity of Mei symmetry for the motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2011, 20(4): 040201-1-040201-4

60, Xing-Zhong Wang, Jingli Fu and Chaorong LiNoether symmetry and first integral of discrete nonconservative and nonholonimic Hamiltoinian systemApplied Mechanics and Materials2012,117-119:167-173

61. Zhang Shi-Hua, Chen Ben-Yong and Fu Jing-Li, Hamilton formalism and Noether symmetry for mechanico-electrical systems with fractional derivatives, Chinese Physics B,2013, 21(10):100202-1-100202-8
62 Wang Xing-Zhong, Fu Hao, Fu Jing-Li, Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems, Chinese Physics B, 2012,21(4):040201-6
63.Zhao Gang-Ling,ChenLi-Qun, FuJing-Li,Mei symmetries and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices, Chinese Physics B, 2013,22(3): 030201-1—030201-7
64.Cai Ping-Ping,FuJing-Li, GuoYong-Xin,Noether symmetries of the nonconservative and nonholonomic systems on time scales,Science China: Physics, Mechanics & Astronomy, 2013, 56(5): 1017-1028 
65. Fang-Yu Hong,Huiqin Qian, Jing-Li Fu, Zhi-Yan Zhu, and Li-zhen Jiang. Strong coupling between a topological qubit and a nanomechanical resonator, Physics Review A, 2013,87: 032339-1—032339-5
66.Hong Fang-Yu,XiongShi-Jie,Fu Jing-Li,Zhu Zhi-Yan. Efficient excitation of a symmetric collective atomic state with a single-photon through dipole blockade. Commun. Theor.Phys., 2013,59:365-369
67.Fu Jing-Li, Song Duan, Fu Hao, He Yu-Fang, Hong Fang-Yu, Symmetries and conserved quantities of discrete wave equation associated with the Ablowitz-Ladik-Lattice-system, Chinese Physics B, 2013,22(9):090201-1-090201-9
68. Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He,Symmetries and variational calculation of disc discrete Hamiltonian systems, Chinese Physics B, 2013,23(7): 070201-7

    69. 施沈阳, 傅景礼,陈立群, 离散Ladrange系统的Lie对称性,物理学报,20075663060-3063(SCI)

70..郑世望,傅景礼(通讯作者),李显辉,机电系统的动量依赖对称性和非Noether守恒量,物理学报,200554125511-5516

      71. 傅景礼 王新民,相对论Birkhoff系统的Lie对称性和守恒量,物理学报,2000,

(6)1023-1028

     72. 傅景礼 陈立群,罗绍凯,陈向炜,相对论Birkhoff系统动力学研究,物理学报,

2001, (12) 2289-2295

    73. 傅景礼 陈立群,薛纭,罗绍凯,相对论Birkhoff系统的平衡稳定性,物理学报,

2002,51(12) , 2683-2689

74傅景礼,陈立群,薛纭,转动相对论Birkhoff系统的平衡稳定性,物理学报 2003, 52(2), 256-260

       75. 傅景礼,陈立群,约束Birkhoff系统的几何理论,力学学报,2002,(11)(ZK

       76. 傅景礼,陈立群,谢凤萍,相对论Birkhoff系统的对称性摄动和绝热不变量。物

理学报, 200352112664-2670

 

 

姓名:傅景礼

性别:男

所在部门:理学院

行政职务:

专业技术职务:教授

人才称号

所属学科

【硕士点】
» 测试计量技术及仪器

Copyright © 2025 by CNVP All Rights Reserved.