研究成果
1) X. Zhang, M. Cha, “Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor” Proceedings of the Combustion Institute, 35 (2015) 3447-3454;
2) X. Zhang, F. Feng, S. Li, X. Tang, Y. Huang, Z. Liu, K. Yan, “Aerosol formation from styrene removal with an AC/DC streamer corona plasma system in air”, Chem. Eng. J. 232 (2013) 527-533.
3) S. Yao, X. Shen, X. Zhang* et al., Sustainable removal of particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic method, Chem. Eng. J., 327(2017)343-350
4) Z. Wu, Z. Zhu, X. Hao, X. Zhang* et al., Enhanced Oxidation of Naphthalene Using Plasma Activation of TiO2/diatomite catalyst, Journal of Hazardous Material, 347 (2018) 48-57
5) S. Yao, H. Zhang, and X. Zhang* et al., A Novel Four-Way Plasma-Catalytic Reactor for The Aftertreatment of Diesel Engine Exhausts, Ind. Chem. Eng. Res. 57 (4), 1159-1168,SCI (IF=2.8) Top, 2018
6) X. Zhang, M. Cha, “The reformation of liquid hydrocarbons in an aqueous discharge reactor”, J. Phys. D: Appl. Phys. 48 (2015) 215201
7) X. Zhang, M. Cha, Tailored reforming of n-dodecane in an aqueous discharge reactor, J. Phys. D: Appl. Phys., 49 2016 (175201)
8) X. Zhang, M. Cha, “Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor”, J. Phys. D: Appl. Phys. 46 (2013) 415205 (10pp) (封面文章)
9) X. Zhang, W. Feng, Z. Yu, S. Li, J. Zhu, K. Yan, “Comparison of styrene removal in air by positive and negative DC corona discharges”, Int. J. Environ. Sci. Technol., 10 (2013) 1377-1382;
10) X. Zhang, B. Lee, H. Im, M. Cha, Ozone production with dielectric barrier discharge: effects of power source and humidity, IEEE Trans. Plasma Sci., 44 (2016) 2288-2296
11) X. Zhang, Y. Huang, Z. Liu, K. Yan, “Aerosol emission and collection in styrene-contaminated air remediation with a multi-stage plasma system”, Journal of Electrostatics, 76 (2015) 31-38
12) X. Zhang, J. Zhu, X. Li, Z. Liu, X. Ren, K. Yan, “Characteristics of Styrene
Removal with an AC/DC Streamer Corona Plasma System”, IEEE Trans. Plasma Sci., 6 (2011) 1481-1488;
13) X. Zhang, W. Chen, J. Zhu, W. Feng, K. Yan, “Aerosol formation and decomposition of benzene derivatives by AC/DC streamer corona discharge,” IJPEST. 4 (2010) 130-134;
14) S. Yao, S. Weng, and X. Zhang* et al., Characteristics of OH production by O2/H2O pulsed dielectric barrier discharge, Vacuum, 126 (2016) 16-23
15) S. Yao, S. Weng, Q. Jin, and X. Zhang* et al., “Comparison of gasoline-ranged n-alkanes conversions using dielectric barrier discharge: a kinetic study,” Plasma Chem. Plasma Process., 37(2016)137-148.
16) S. Yao, X. Shen and X. Zhang* et al., “Metal sulfates enhanced plasma oxidization of diesel particulate matter,” IEEE Trans. Plasma Sci., 45 (2017) 2984-2987.
17) L. Cai, H. Sha, G. Xie, X.Zhang*, Treatment of Styrene-Contaminated Air Using Combined Process of Microelectrolysis and Biotrickling Filter, Environmental Engineering Science, https://doi.org/10.1089/ees.2017.0460, 2018
18) Z. WU, X.HAO and X. Zhang*, N-pentane activation and products formation in a temperature-controlled dielectric barrier discharge reactor, Plasma Source Science and Technology, 27(2018)115002
19) Z. WU, X.HAO and X. Zhang*, Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels, Energy, 189(2019), 116265
20) Zuliang Wu, Weili Zhou; Zhoubin Zhu; Xiaodong Hao; Xuming Zhang*, Enhanced oxidation of xylene using plasma activation of an Mn/Al2O3 catalyst, IEEE Trans. Plasma Sci., 48 (2020)163-172
21) X. Zhang*, Y. Wenren, W. Zhou et al., Dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor: disclosure of reactant effect, J. Phys. D: Appl. Phys. 53 194002, 2020.
22) X. Zhang, J. Han et al., Characteristics of Ammonia Oxidation in a
Dielectric Barrier Discharge Reactor, IEEE Trans. Plasma Sci., 48 (2020), 3616-3520
23) B. Jiang, X. Zhang* et al., Plasma-enhanced low temperature NH3-SCR of NOx over a Cu-Mn/SAPO-34 catalyst under oxygen-rich conditions, Applied Catalysis B: Environmental, 286 (2021) 119886.
24) Y. Huang, L. Zhang, X. Zhang*, S. Li, Z. Liu, K. Yan*, “Electroacoustic Process Study of Plasma Sparker Under Different Water Depth”, IEEE Journal of Oceanic Engineering, 99 (2015) 1-9 (10.1109/JOE.2014.2382451)
25) L. Zhang, Q. Yang, Y. Huang1*, X.Zhang2*, Z. Liu, K. Yan, Experimental Studies on Electric and Optic Characteristics of Pulsed Streamer Discharge on Water Surface, To be submitted, 2018
26) F. Feng, X. Shen, Q. Zheng, S. Dai, X. Zhang, Y. Huang, Z. Liu, K. Yan, “Characteristics of back corona discharge in a honeycomb catalyst and its application for VOCs treatment” Environ. Sci. Technol. 49 (2015) 6831-6837
27) Y. Huang, L. Zhang, X. Zhang, Z. Liu, K. Yan, “The Plasma-Containing Bubble Behavior Under Pulsed Discharge of Different Polarities”, IEEE Trans. Plasma Sci., 99 (2015) (10.1109/TPS.2014.2387193)
28) Y. Chen, Y. Li, X. Zhang, A. Zhu, Y. Huang, Z. Liu, K. Yan, “Degradation of Aqueous Rhodamine B with Gaseous Streamer Corona Plasma”, IEEE Trans. Plasma Sci., 99 (2015) 828-835.
29) Y. Huang, S. Dai, F. Feng, X. Zhang, Z. Liu, K. Yan, “Toluene Removal by a Two-Stage DBD-catalyst System” Environmental Science and Pollution Research, 23(2015)19240-19250.
30) Y. Huang, H. Yan, B. Wang, X. Zhang, Zhen Liu, and K. Yan, “The electro-acoustic transition process of pulsed corona discharge in conductive water” J. Phys. D: Appl. Phys. 47 (2014) 255204 (16pp);
31) L. Ye, F. Feng, J. Liu, X. Tang, X. Zhang, Y. Huang, Z. Liu, and K. Yan, “Toluene Decomposition by a Two-stage Hybrid Plasma Catalyst System in Dry Air”, IEEE Trans. Plasma Sci., 9 (2014) 3529-3538.
32) X. Tang, F. Feng, L. Ye, X. Zhang, Y. Huang, Z. Liu, K. Yan, “Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts”, Catalysis Today. 211 (2013) 39-43.
33) J. Zhu, X. Zhang, W. Chen, Y. Shi, and K. Yan, “Electrostatic precipitation of fine particles with a bipolar pre-charger”, Journal of Electrostatics, 68 (2010) 174-178;
34) J. Chen, Q. Su, H. Pan, J. Wei, X. Zhang, S. Yao, “Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor,” Chemosphere, 75 (2009) 261-265;
35) X. Li, X. Zhang, J. Zhu, W. Feng and K. Yan, “Sensitivity analysis on coal-fired ash resistivity in terms of its compositions and gasous water concentration,” Journal of Electrostatics, 70(2012) 83-90;
36) J. Zhu, Y. Yao, S. Luo, X. Guo, X. Zhang, Y. Zeng, K. Yan, “Evaluation of fine particle collection with an electrostatic precipitator energized by single and three phase TRs”, Journal of Electrostatics 70 (2012) 285-291.
37) 章志成,章旭明,郑超,邓官垒,闫克平,刘振,“LCR触发多级多通道火花开关的设计及其性能分析”,高电压技术,39 (2013), 928-936
38) 曾宇翾, 沈欣军, 章旭明, 刘振, 闫克平,“电除尘器中离子风的实验研究”,浙江大学学报 (工学版) 47 (2013) 2208-2211
39) 朱继保,章旭明,胡行伟,闫克平,“电除尘器电极结构与灰堆积特性相关性研究”, 科技导报,26 (2008)30-33;
40) 章旭明,黄立维,潘丽红,岳桥, “成核添加剂对低温相变蓄冷材料过冷度的影响研究” 浙江工业大学学报,35 (2007);
41) 陈江,章旭明, “村镇垃圾混合生物质衍生燃料(RDF)燃烧性能及氯化氢排放特性研究”浙江农业学报,23 (2011);
42) 陈江, 章旭明, “城郊乡村生活垃圾衍生燃料热解特性研究”环境污染与防治,34 (2012);
43) S. Yao, S. Weng, Q. Jin, H. Lu, Z. Wu, X. Zhang, J. Han, H. Lu, X. Tang, B. Jiang, “Mechanism of Decane Decomposition in a Pulsed Dielectric Barrier Discharge Reactor,” IEEE Trans. Plasma Sci.,44(2016) 2660-2666
44) H. Lu, S. Wang, and X. Zhang et al., “Seasonal variations and source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China”, Environ Sci Pollut Res Int., doi: 10.1007/s11356-017-9265-1.2017
45) L. Mao, Z. Chen and X. Zhang et al., Plasma-catalyst hybrid reactor with CeO2/Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction, Journal of Hazardous Material, 347(2018)150-159.
46) W. Wang, R. Snoeckx, X. Zhang, M. Cha, A. Bogaerts, Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture, J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.7b10619, 122 (2018) 8704-8723.
47) W. Wang, R. Snoeckx, X. Zhang, M. Cha, A. Bogaerts, Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol, Scientific Report, (2018) 8:15929